DALPU-4

NEOWINE Crypto and Authentication DATASHEET

Features

32-bit ARM Cortex-M3 Core

- Nested Vectored Interrupt Controller(NVIC):1 Wake up and 1 peripheral interrupt
- 16-bit or 32-bit System timer (Sys Tick): System timer for OS task management
- Creation and Management of Cipher Key

On-chip Memory

- EEPROM
- 128 KB
- Configuration/Key/User data storage
- 15 User Zones of 2 Kbits Each
- Retention 10 years
- Erase/Write Endurance: 100K
- SRAM
- On chip 32 Kbytes

Serial Interface

- UART
- Full duplex double buffer
- Parity can be enabled or disabled
- Built-in dedicated baud rate generator
- Various error detection functions (parity error, framing errors, and overrun errors)
- External x-tal for UART
- SPI0, SPI2
- Slave, Mode 0
- Up to 40 MHz SCK
- Symmetric cipher core control
- SPI1
- Master/Slave
- Master: Up to 10 MHz SCK
- Slave: Up to 1.5 MHz SCK
- Mode 0, 1, 2, 3
- GPIO
- 4 GPIOs

Clock, Reset and Voltage

- Clock
- Built in OSC.
- Main Clock: 50 fMHz
- Reset
- Built in power on reset
- Software reset
- 1.5V, 3.3V Supply Voltage

Debug

■ Serial Wire Debug Port(SW-DP)

Low Power Consumption Mode

- The GPIO is sufficient to power up and down
- PMU clock gating of Cortex-M3

Asymmetric cipher function

- ECC-P256, RSA-4096
- ECDSA, ECDH

Symmetric cipher function

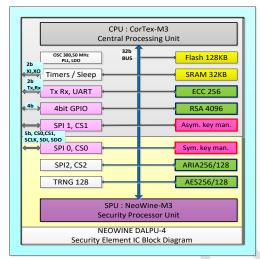
- AES-128/256, ARIA-128/256
- Modes of Operation: Confidentiality (ECB, CBC, CFB, OFB, CTR)
- Creation and Management of Cipher Key

Crypto Device function

- User ID, User Serial (Manufacture ID), MIDR, RVC
- PUF
- Generate random using two different phase counters

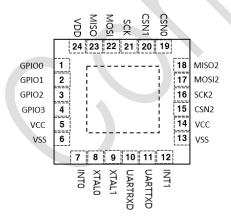
Application

- Print cartridge, GPS, Navigation
- Mobile Device, IPC, CCTV, DVD
- Set-Top Boxes (STBs), Etc.


Standards

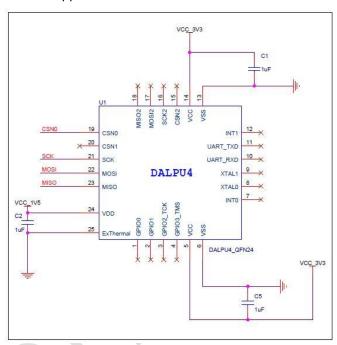
- ECC, RSA FIPS 186-3, 186-4
- AES-128/256 FIPS 140-2
- TRNG NIST SP 800-90B compatibility

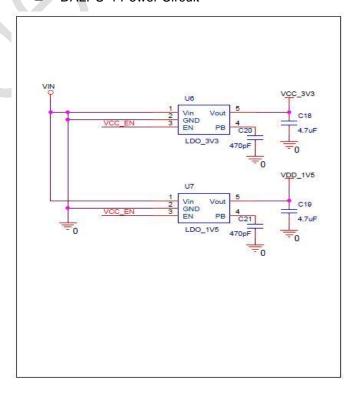
Benefits


- Read/Write, Encrypted, or Read-only User Zone Options
- Ease use of Crypto Device to replace of existing EEPROM devices
- Authenticate Consumer products, Components, and Network equipment
- Protect Sensitive Firmware
- Securely Store Sensitive Data
- Manage Warranty Claims
- Securely Store Identity Data

Block Diagram

Package


■ QFN 4x4-25L (4mm X 4mm X 0.75mm)


Top view

Schematic Diagram

Application Circuit

■ DALPU-4 Power Circuit

Contents

Cor	itents	3
Figu	ıre	4
1	Introduction	5
	1.1 Applications	5
	1.2 Device Features	5
	1.3 Crypto Operation	5
2	Device configurations	6
	2.1 Symmetric Cipher Parts	6
	2.2 Asymmetric Cipher Parts	8
3	Device Functions	10
4	E-MCU to DALPU-4 Interface	11
	4.1 SPI0 Interface	11
	4.2 SPI1 Interface	
5	Address Map	13
	5.1 CORTEX-M3 AMBA Bus Address Map	13
	5.2 Symmetric Cipher parts Address Map	14
6	Registers	16
	6.1 SPI0 registers	16
	6.2 CORTEX-M3 registers	41
7	EEPROM Configuration	46
8	Revision History	47

Figure

Figure 2-1 Main Control state machine diagram	7
Figure 4-1 SPI0 Normal Mode Write in Address Mode	. 11
Figure 4-2 SPI0 Normal Mode Read in Address Mode	. 11
Figure 4-3 Motorola SPI frame format with SPO=0 and SPH=1	. 12

1 Introduction

The following sections introduce the features and functions of the DALPU-4 crypto device.

1.1 Applications

DALPU-4 is designed to apply high security rules to the product. These security rules can be used to protect the data, to protect the functionality of the product, and to prevent replication.

- Product authentication
 - DALPU-4 has the function of preventing reproduction or illegal modification of products.
- Exchanging Security Keys
 - DALPU-4 has Public-Key Cryptosystems. User can use this function to exchange keys safely.
- Storing Security Data

You can store secret keys used for ciphering. Can save configuration, calibration or other secret data.

1.2 Device Features

The DALPU-4 has an Electrically Erasable Programmable Read-Only Memory (EEPROM). The EEPROM can be used for key storage, miscellaneous write/read data, read-only, secret data, consumption logging, and security configuration. DALPU-4 has 32-bit ARM Cortex-M3 Core. This core is in charge of public key operation. DALPU-4 has 32 Kbytes SRAM, it is used for M3 code execution region and user code region. DALPU-4 has SPI0, SPI1, UART and GPIO interfaces. SPI0 can have a slave mode. With SPI0 user can control symmetric cipher core. SPI1 can have both a slave and a master mode. With SPI1 in a slave mode, user can control asymmetric cipher core. DALPU-4 has a power saving mode. In sleep mode internal oscillator is disabled. DALPU-4 has a symmetric cipher function which is ECC-P256, ECDSA and ECDH. DALPU-4 has a symmetric cipher function which is AES-128/256. AES supports ECB, CBC, CFB, OFB, CTR operating modes..

1.3 Crypto Operation

DALPU-4 save control information to the EEPROM. These control information is a configuration data. The configuration data is protected by password. DALPU-4 can encrypt or decrypt an input data with AES. And the result is read by an external MCU. DALPU-4 encrypt user data and save to a EEPROM. External MCU(E-MCU) can read saved data. When E-MCU request the saved data, the DALPU-4 returns encrypted data. DALPU-4 has authentication function using SHA.

2 Device configurations

DALPU-4 is composed of two parts. One is asymmetric cipher part and the other is symmetric cipher part. The asymmetric cipher part is composed of a CORTEX-M3 and an asymmetric cipher hardware. The symmetric cipher part is a Security Processor Unit(SPU). The symmetric cipher part is composed of a symmetric cipher hardware and a main control hardware. The asymmetric cipher part take charge of ECC-P256, RSA-2048, ECDSA and ECDH. The symmetric part take charge of AES-128/256, SHA-256 and main control function. The main control function consists of state machine hardware. The following sections explain operation of each functions. An external MCU controls DALPU-4. The DALPU-4 has two interfaces to the external MCU. One is SPI0 for the symmetric cipher part. The other is SPI1 for the asymmetric cipher part. The external MCU can control DALPU-4 main control hardware through SPI0 interface. The external MCU can control a CORTEX-M3 and asymmetric cipher hardware through SPI1.

2.1 Symmetric Cipher Parts

The Symmetric Cipher part consist of a Symmetric Cipher Hardware and a Main Control Hardware. First the Main Control Hardware parts are as follows.

2.1.1 Main Control Hardware

The Main Control Hardware can have 14 main states. Each main state has independent operation. Most of operations are processed in one main state, but some operations are processed in several main states. When the DALPU-4 wakes up, it processes the initial procedures automatically, then goes to ST0_STANDBY state. Usually, if DALPU-4 finishes a certain function, it always goes to ST0_STANDBY state. A hardware logic sends main state to ST0_STANDBY state when the DALPU-4 finishes a function, or E-MCU must control to send main state to ST0_STANDBY state in some functions. If DALPU-4 finishes state abnormally, it may can't process another function normally.

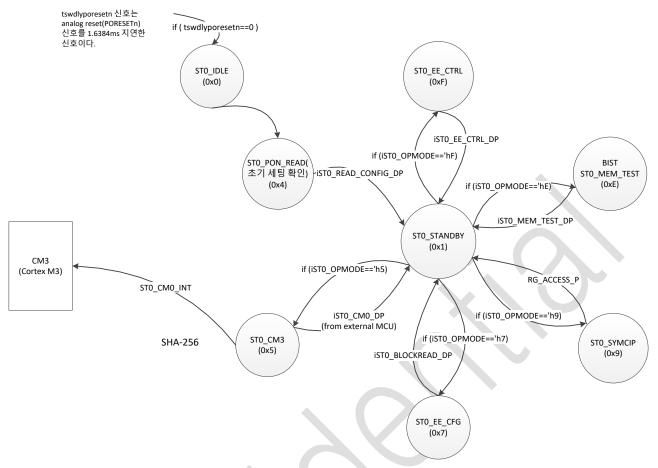


Figure 2-1 Main Control state machine diagram

Figure 2-1 shows every state which the main state can have. When power is on, the DALPU-4 begins an initial procedure. The initial procedure starts from ST0_IDLE state, and stops to ST0_STANDBY state. The initial procedure starts automatically when the power is up. User can skip ST0_CHK_RSFLAG state. See the following sections to control skip function of ST0_CHK_RSFLAG state.

2.1.1.1 ST0_PON_READ STATE CONTROL

The hardware prepares initial values to process a normal operation. The DALPU-4 main control hardware executes this state automatically

2.1.1.2 ST0_CM3 STATE CONTROL

The hardware cannot set this state, the E-MCU can set this state through SPI0. The E-MCU controls RG_ST0_OPMODE(0x1_0604) register to set ST0_CM0 state. If the E-MCU want to communicate with CORTEX-M0, E-MCU sets ST0_CM0 state first. After then, E-MCU sends control information to CORTEX-M0. If CORTEX-M0 receive control information, it controls asymmetric cipher hardware. Some of CORTEX-M0 control may affect the symcipher hardware blocks. A detail explanation is given later of this document.

2.1.1.3 ST0_SYMCIP STATE CONTROL

The hardware cannot set this state, the E-MCU can set this state through SPI0. The E-MCU controls RG_ST0_OPMODE(0x1_0604) register to set ST0_SYMCIP state. DALPU-4 operates symmetric cipher functions in this state.

Second the Symmetric Cipher Hardware configurations are as follows.

2.1.2 SYMMETRIC CIPHER HARDWARE

Symmetric cipher hardware handles the encryption and decryption using AES and the authentication using SHA. It also generates random. It manages writing and reading of EEPROM. It manages a key generation, key storage and key change.

2.2 Asymmetric Cipher Parts

Asymmetric cipher parts consist of the CORTEX-M3 and the Asymmetric Cipher Hardware. The CORTEX-M3 controls the asymmetric Cipher Hardware. The Asymmetric Cipher Hardware is responsible for performing ECC, ECDH and ECDSA algorithms.

2.2.1 **CORTEX-M3 HARDWARE**

2.2.1.1 CORTEX-M3 CORE

The Cortex-M3 processor is an entry-level 32-bit ARM Cortex processor designed for a broad range of embedded applications. It offers significant benefits to developers, including:

- simple, easy-to-use programmers model
- highly efficient ultra-low power operation
- excellent code density
- deterministic, high-performance interrupt handling
- upward compatibility with the rest of the Cortex-M processor family.

2.2.1.2 CORTEX-M3 CORE PERIPHERALS

The Cortex-M3 core peripherals are:

NVIC

An embedded interrupt controller that supports low latency interrupt processing.

System Control Block

The System Control Block (SCB) is the programmers model interface to the processor. It provides system implementation information and system control, including configuration, control, and reporting of system exceptions.

Optional system timer

The optional system timer, SysTick, is a 24-bit count-down timer. If implemented, use this as a Real Time Operating System (RTOS) tick timer or as a simple counter.

Public Key Engine (Asymmetric Cipher)

The PK Crypto Engine is a very flexible solution based on a scalable array of dual-field processing elements that can be used to execute all operations & algorithms required for PK Crypto-systems:

- Elliptic Curve Cryptography (ECC)
- •Diffie-Hellman (D-H & ECD-H) Key Exchange
- Digital Signature Algorithm (DSA) and Elliptic Curve Digital Signature Algorithm (ECDSA)
- Primality Test (Rabin-Miller) & Key Generation
- Any other crypto algorithm can be supported on request

Embedded EEPROM and SRAM

DALPU-4 has 128 KB of EEPROM and SRAM. The EEPROM stores the cortex-M3 code and the rom code of the asymmetric cipher. The SRAM is shared by the Cortex-M3 and Asymmetric Cipher, Symmetric Cipher for TLS.

Registercm3

Registercm3 is basically used by Cortex M3 to control the EEPROM. Generates the control signals needed to write to or read from the EEPROM. It is also used when selecting IO or SPI, and also used when Cortex M3 generates a random value.

Timers

The Dual Input Timers module, Timers is an AMBA slave module and connects to the APB. The Dual-Timer module consists of two programmable 32/16-bit down counters that can generate interrupts on reaching zero. A Timer module can be programmed for a 32-bit or 16-bit counter size and one of three timer modes using the Control Register. The operation of each Timer module is identical. It has one of three timer modes:

- free-running
- periodic
- one-shot

UART

The UART is an AMBA slave module that connects to the Advanced Peripheral Bus (APB). The UART provides:

- Compliance to the AMBA Specification (Rev 2.0) onwards for easy integration into SoC implementation.
- Separate 16x8 transmit and 16x12 receive First-In, First-Out memory buffers(FIFOs) to reduce CPU interrupts.
- Programmable FIFO disabling for 1-byte depth.
- Programmable baud rate generator. This enables division of the reference clock by (1x16) to (65535 x16) and generates an internal x16 clock. The divisor can be a fractional number enabling you to use any clock with a frequency >3.6864MHz as the reference clock.
- Standard asynchronous communication bits (start, stop and parity). These are added prior to transmission and removed on reception.

GPIOs (General-Purpose Input/Output)

The GPIO is a general purpose I/O device. It has the following properties:

- three registers : Data, Direction, Interrupt Registers
- 32 input or output lines with programmable direction
- · word and halfword read and write access
- address-masked byte write to facilitate quick bit set and clear operations
- address-masked byte read to facilitate quick bit test operations
- maskable interrupt generation based on input value change.

SPI

It has SPI0, SPI1 and SPI2, SPI0 and SPI2 only operates as slave, and it is used by EMCU to control Symmetric Cipher. SPI1 is used by Cortex-M3 to control Symmetric Cipher. It can operate as master or slave.

2.2.2 ASYMMETRIC CIPHER HARDWARE

This Public Key Engine(Asymmetric Cipher) has following features.

- •1 multiplier architecture
- ECC/ECDH/ECDSA operations up to 512 bits
- ECDSA p256
- \bullet Supports prime field GF(p) and binary field $GF(2^m)$ fields .

3 Device Functions

3.1.1 AES ENCRYPTION(DECRYPTION) FUNCTION

AESEncrypt control takes the plaintext from 16 bytes and encryptions and outputs ciphertext. The key used for AES encryption are notified to DALPU-4 by E-MCU using the RG_EE_KEY_AES_xN register. AESDecrypt control takes the ciphertext input from 16 bytes and decodes and outputs a plaintext. The keys used for AES decryption are notified to DALPU-4 by E-MCU using the RG_EE_KEY_AES_xN register.

3.1.2 **AES ENCRYPTION WRITE(READ) FUNCTION**

With AESEncwrite control, 16 bytes of data can be written to the EE_USER_ZONE_Mx area of the EEPROM. AESEncwrite procedures are as follows. E-MCU encrypts the 16 bytes plaintext into ciphertext using the EE_KEY_AES_xN key and writes it to DALPU-4. For DALPU-4, receive the 16 bytes data and decrypt it using the EE_KEY_AES_xN key and store it in the appropriate EEPROM. The AESEncREad procedure is as follows. E-MCU sends control that DALPU-4 reads user data 16 bytes from EEPROM. For DALPU-4, read the 16 bytes plain text from EEPROM and cipher it using EE_KEY_AES_xN key. E-MCU reads the cipher text after waiting DALPU-4 finish decryption. AES Encryption Write (or Read) function encrypt or decrypt 16 bytes at one time. E-MCU can process 4 encryptions (or decryptions) continuously. But E-MCU should not control EEPROM address cross over the page boundary of EEPROM.

3.1.3 **EEPROM ERASE FUNCTION**

This function enables you to read or clear EEPROM specific information. User use this function for special purpose. Users should review sufficiently before using this feature to determine its intended use. This function is usually not used.

3.1.4 PUF (PHYSICAL UNCRONABLE FUNCTION)

This chapter describes how to create and use the Root Serial corresponding to the unique number of DALPU-4. The Root Serial is a unique number for each device. And this value is a fixed value and cannot be changed. When

3.1.5 RANDOM GENERATION FUNCTION

Random Generator can generate random values in three ways. The first is to generate a random value through SPI0 when the user wants a random value. The second one can be created when a random value is desired in Cortex-M0. Finally, Symmetric cipher can generate and take random values when they are needed.

3.1.6 ECDH (ELLIPTIC CURVE DIFFIE HELLMAN) FUNCTION

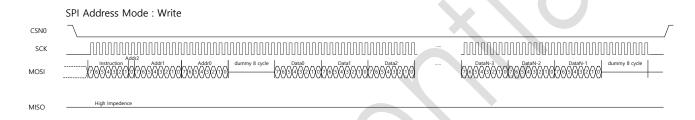
Elliptic Curve Diffie-Hellman key exchange is one way to generate key values on an elliptic curve and exchange encryption keys so that they can share a shared key with other keys on an unencrypted network. DALPU-3 supports ECC P-256, P384, P-521 curves etc and supports up to 512 bits.

3.1.7 ECDSA(ELLIPTIC CURVE DIGITAL SIGNATURE ALGORITHM) FUNCTION

ECDSA implements electronic signatures on elliptic curves and works on ECC P-256, P-384, and P-521 curves etc. ECDSA operations can be executed in both fields GF(p)-prime field or GF(2^m)-binary field. ECDSA signatures can be generated and verified.

4 E-MCU to DALPU-4 Interface

DALPU-4 has SPI0, SPI1, SPI2, UART and GPIO interfaces. In generally DALPU-4 is used as a security function chip not as a MCU. When the DALPU-4 is used as a security function chip, SPI0 and SPI2 is slave mode. When the DALPU-4 is used as a MCU, SPI1 is master mode.


4.1 SPI0, SPI2 Interface

SPI0, SPI2 has write / read protocol as shown in Figure 4-1 and 4-2 below. SPI0, SPI2 is primarily used by external MCUs to control symmetric cipher.

4.1.1 SPIO PROTOCOL TIMING DIAGRAM

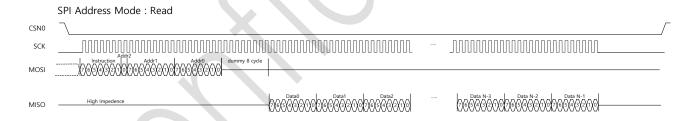

4.1.1.1 SPIO NORMAL MODE WRITE

Figure 4-1 SPI0 Normal Mode Write in Address Mode

4.1.1.2 SPIO NORMAL MODE READ

Figure 4-2 SPI0 Normal Mode Read in Address Mode

4.2 SPI1 Interface

SPI1 is used by EMCU to control PKE(Asymmetric Cipher) through Cortex-M3. It basically supports Motorola SPI frame type. The main feature of the Motorola SPI format is that the inactive state and phase of the SCK signal are programmable through the SPO and SPH bits within the SPI1 control register.

SPO, clock polarity

When the SPO clock polarity control bit is LOW, it produces a steady state low value on the SCK pin. If the SPO clock polarity control bit is HIGH, a steady state high value is placed on the SCK pin when data is not being transferred.

SPH, clock phase

The SPH control bit selects the clock edge that captures data and allows it to change state. It has the most impact on the first bit transmitted by either allowing or not allowing a clock transition before the first data capture edge. When the SPH phase control bit is LOW, data is captured on the first clock edge transition. If the SPH clock phase control bit is HIGH, data is captured on the second clock edge transition.

For Frame format used between EMCU and Cortex-M3, set SPO to 0 and SPH to 1. The transfer signal sequence for Motorola SPI format with SPO=0, SPH=1 is shown in Figure 4-3, which covers both single and continuous transfers.

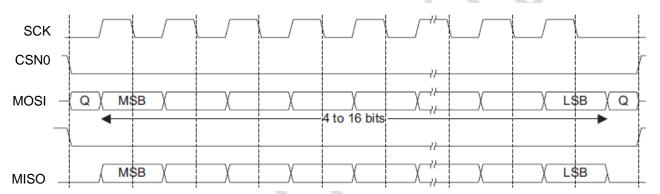


Figure 4-3 Motorola SPI frame format with SPO=0 and SPH=1

5 Address Map

DALPU-4 has CORTEX-M3. The CORTEX-M3 has AMBA bus. And DALPU-4 has address map for the Symmetric Cipher parts and the Asymmetric Cipher parts. CORTEX-M3 AMBA Bus Address Map

Table 5-1 CORTEX-M3 AMBA Bus Address Map

			0x4001_0000
		Asymcipher	0x4000_9000
		WatchDog	0x4000_8000
		UART0	0x4000_7000
0xFFFF_FFFF		Reserved	0x4000_6000
0x4002_0000	Reserved	Reserved	0x4000_5000
0x4001_F000	System Controller Registers	Reserved	0x4000_4000
0x4001_2000	Reserved	SSP	0x4000_3000
0x4001_1000	Reserved	Dual Timer	0x4000_2000
0x4001_0000	AHB GPIO0	Tlmer1	0x4000_1000
0x4000_0000	APB subsystem peripherals	Timer0	0x4000_0000
0x2001_0000	Reserved		
0x2000_0000	SRAM 32KByte		
0x0101_0000	Reserved		
0x0100_0000	bootloader memory		
0x0003_0000	Reserved		
0x0002_0000	Registercm3		
	5500014 400VD		

0x0000_0000

EEPROM 128KByte

5.1 Symmetric Cipher parts Address Map

Symmetric Cipher parts include EEPROM and the symmetric cipher core. E-MCU can access EEPROM and registers with SPI0 interface.

Table 5-2 EEPROM and register Address Map(SPI0)

ADDR(HEX)	M0	CIP	Туре		NAME/RANGE		BYTE SIZE(DEC)	DESCRIPTION
ADDR(HEX)	ACCESS	ACCESS	Туре	Group1	Group2	Group3		
0x0E800 				EE_CM0/ EE_SYMCIP	EE_KEY_ASYMCIP_xN	EE_KEY_ASYMCIP_x0 EE_KEY_ASYMCIP_x3	256	1. KEY zone 2. Asymmetric Key storage area (64Byte * 4)
E900						EE_KEY_AES_x0		1. KEY zone
E9FF					EE_KEY_AES_xN	EE_KEY_AES_x3	256	2. Symmetric Key storage area (64Byte * 4)
EA00 EAFF					EE_RS_xN	EE_RS_x0	256	1. KEY zone 2. ROOT SERIAL storage area (64Byte * 4)
EB00			EEPROM	EE_SYMCI	EE_CONFIG	EE_CONFIG_NW 등	1536	1. Configuration zone 2. This zone contains all information to control the CM0 zone, KEY zone, Configuration zone, and User zone.
F100 0x0FFFF				5	EE_USER_ZONE_M	EE_USER_ZONE_M01 EE_USER_ZONE_M15	3840	1. 15 user zones 2. Store user data.
0x10000 1003F				IUM			64	IUM(RESERVED)
				RESERVED				
0x10100 1013F			REGISTER	RG_EEBUF			64	Used for EEPROM write operations and BIST test application. Not used for EEPROM read operation.
0x10140			KEGISTEK	RESERVED				
				RESERVED				
0x10200 				RESERVED				

ADDR(HEX)	М0	CIP CORE	Туре		NAME/RANGE		BYTE SIZE(DEC)	DESCRIPTION
ADDIKITEA	ACCESS	ACCESS	.,,,,,	Group1	Group2	Group3		
1023F								
				RESERVED				
0x10300								First ENC input 128 bits
						RG_ENCINBUF0	16	buffer share with
1030F					RG_ENCINBUF			RG_CMDBUF[15:0].
0x10310					KG_LINCHADOI			Second ENC input 128 bits
						RG_ENCINBUF1	16	buffer share with
1031F								RG_CMDBUF[31:16].
0x10320								First ENC output 128 bits
						RG_ENCOUTBUF0	16	buffer share with
1032F					RG_ENCOUTBUF			RG_CMDBUF[47:32].
0x10330					KG_LINCOOTBOI			Second ENC output 128
						RG_ENCOUTBUF1	16	bits buffer share with
1033F				RG_EEBUF				RG_CMDBUF[63:48].
0x10400				NG_EEDOI				First DEC input 128 bits
						RG_DECINBUF0	16	buffer share with
1040F					RG_DECINBUF			RG_CMDBUF[15:0].
0x10410					NG_BECHADOI			Second DEC input 128 bits
						RG_DECINBUF1	16	buffer share with
1041F								RG_CMDBUF[31:16].
0x10420								First DEC output 128 bits
						RG_DECOUTBUF0	16	buffer share with
1042F					RG_DECOUTBUF			RG_CMDBUF[47:32].
0x10430					NG_BECOOTBOT			Second DEC output 128 bits
						RG_DECOUTBUF1	16	buffer share with
1043F								RG_CMDBUF[63:48].
				RESERVED				
10500								
				RESERVED			32	RESERVED
1051F								
				RESERVED				
0x10600								DALDII 2
				RG_SYMCIP			512	DALPU-3 control registers.
107FF								Ü

6 Registers

6.1 SPI0 registers

6.1.1 RG_EEBUF BUFFER ADDRESS MAP

 $\ensuremath{\mathsf{RG}}\xspace_{\ensuremath{\mathsf{EEBUF}}}$ is used for encryption, decryption and EEPROM write.

SPI0 address width is 17 digits.

ADDR(HEX)	WR	ВІТ	NAME/RANGE	DESCRIPTION	RESET VALUE			
RG_EEBUF100					VALUE			
Use this register to write and read the data in DALPU-3 internal RG_EEBUF buffer. And it is								
used to write	data	to EEPI	ROM.					
The RG_EEBUF buffer size is 512 bits(64 Bytes).								
0x10100	WR	[7:0]	MCU : RG_EEBUF[0]	RG_EEBUF[0]	0x00			
•••	WR	[7:0]			0x00			
1010F	WR	[7:0]	MCU : RG_EEBUF[15]	RG_EEBUF[15]	0x00			
0x10110	WR	[7:0]	MCU : RG_EEBUF[16]	RG_EEBUF[16]	0x00			
	WR	[7:0]			0x00			
1011F	WR	[7:0]	MCU : RG_EEBUF[31]	RG_EEBUF[31]	0x00			
0x10120	WR	[7:0]	MCU : RG_EEBUF[32]	RG_EEBUF[32]	0x00			
	WR	[7:0]			0x00			
1012F	WR	[7:0]	MCU : RG_EEBUF[47]	RG_EEBUF[47]	0x00			
0x10130	WR	[7:0]	MCU : RG_EEBUF[48]	RG_EEBUF[48]	0x00			
	WR	[7:0]			0x00			
1013F	WR	[7:0]	MCU : RG_EEBUF[63]	RG_EEBUF[63]	0x00			
10140			RESERVED					
102FF			RESERVED					
RG_EEBUF300								
Use this registers as the input and output buffer when performing AES encryption.								
0x10300	WR	[7:0]	RG_EEBUF[0] MCU : RG_ENCINBUF0[0]	Encoder0 input buffer or Key0 input buffer	0x00			

ADDR(HEX)	WR	BIT	NAME/RANGE	DESCRIPTION	RESET
			, -		VALUE
		[7:0]		Encoder0 input buffer or Key0 input buffer	0x00
1030F		[7:0]	RG_EEBUF[15] MCU : RG_ENCINBUF0[15]	Encoder0 input buffer or Key0 input buffer	0x00
0x10310		[7:0]	RG_EEBUF[16] MCU : RG_ENCINBUF1[0]	Encoder1 input buffer or Key1 input buffer	0x00
	WR	[7:0]		Encoder1 input buffer or Key1 input buffer	0x00
1031F		[7:0]	RG_EEBUF[31] MCU : RG_ENCINBUF1[15]	Encoder1 input buffer or Key1 input buffer	0x00
0x10320		[7:0]	RG_EEBUF[32] MCU : RG_ENCOUTBUF0[0]	Encoder0 output buffer	0x00
	WR	[7:0]		Encoder0 output buffer	0x00
1032F		[7:0]	RG_EEBUF[47] MCU: RG_ENCOUTBUF0[15]	Encoder0 output buffer	0x00
0x10330		[7:0]	RG_EEBUF[48] MCU : RG_ENCOUTBUF1[0]	Encoder1 output buffer	0x00
	WR	[7:0]		Encoder1 output buffer	0x00
1033F		[7:0]	RG_EEBUF[63] MCU: RG_ENCOUTBUF1[15]	Encoder1 output buffer	0x00
RESERVED			RESERVED		
RG_EEBUF400		s the i	nput and output buffer who	en performing AES decryption.	
0x10400	WR	[7:0]	RG_EEBUF[0] MCU : RG_DECINBUF0[0]	Decoder0 input buffer or Key0 input buffer	0x00

ADDR(HEX)	WR	BIT	NAME/RANGE	DESCRIPTION	RESET VALUE						
		[7:0]		Decoder0 input buffer or Key0 input buffer	0x00						
1040F		[7:0]	RG_EEBUF[15] MCU : RG_DECINBUF0[15]	Decoder0 input buffer or Key0 input buffer	0x00						
0x10410		[7:0]	RG_EEBUF[16] MCU: RG_DECINBUF1[0]	Decoder1 input buffer or Key1 input buffer	0x00						
	WR	WR	[7:0]		Decoder1 input buffer or Key1 input buffer	0x00					
1041F		[7:0]	RG_EEBUF[31] MCU : RG_DECINBUF1[15]	Decoder1 input buffer or Key1 input buffer	0x00						
0x10420		[7:0]	RG_EEBUF[32] MCU: RG_DECOUTBUF0[0]	Decoder0 output buffer	0x00						
•••	WR	[7:0]		Decoder0 output buffer	0x00						
1042F								[7:0]	RG_EEBUF[47] MCU: RG_DECOUTBUF0[15]	Decoder0 output buffer	0x00
0x10430		[7:0]	RG_EEBUF[48] MCU : RG_DECOUTBUF1[0]	Decoder1 output buffer	0x00						
	WR	[7:0]		Decoder1 output buffer	0x00						
1043F		[7:0]	RG_EEBUF[63] MCU: RG_DECOUTBUF1[15]	Decoder1 output buffer	0x00						

6.1.2 REGISTER ADDRESS MAP

ADDR(HEX)	WR	BIT	NAME/RANGE	DESCRIPTION	RESET VALUE
RG_SOFT_RES	SET				
		[7:2]	RESERVED		
				Reset EEPROM. Test register. To reset	
				EEPROM, write 1 then Write 0 to this	
	WR	[1]	RG_SWRESET_EE	register bit.	0x0
				0 : Normal	
0x10600				1 : RESET	
				Reset symcipher hardware parts. To	
	WR	/R [0]	RG_SWRESET	reset symchpher hardware parts, write	
				1 then write 0 to this register bit.	0x0
				0 : Normal	
				1 : RESET	
			- RG_ACCESS	Use this register to control DALPU-3.	
0×10601	Α	_		This register is access register. That is,	_
0x10601			NO_ACCESS	it is not a register that writes and	_
				reads values.	
				Use this register to control DALPU-3.	
				This register is access register. That is,	
0x10602	Α		RG ACCESS2	it is not a register that writes and	_
0x10002	A		- RG_ACCESS2	reads values.	_
				Used to control ST0_EEP_OW_CTRL	
				function.	
0x10603			RESERVED		

RG_ST0_OPMODE

Use this register to designate the DALPU-3 main control state. When you finish the control action on each function state, go to ST0_STANDBY State and wait for the next control. The register values corresponding to the state for each function are shown below. ST0_STANDBY is in standby mode and in standby mode. The other state is the state that DALPU-3 performs specific actions. When DALPU-3 ends a particular operation, E-MCU sets this register to ST0_STANDBY state.

ADDR(HEX)	WR	BIT	NAME/RANGE	DESCRIPTION	RESET VALUE
0x10604		[7:4]	RESERVED		

ADDR(HEX)	WR	ВІТ	NAME/RANGE	DESCRIPTION	RESET
				To enter the desired main state, write	VALUE
				the following corresponding values in	
				this register: To end control and	
				change to standby state, write a value	
				of " 0x1 " to this reigister and write	
				access to the RG_ACCESS register.	
				4'h1 : Set main state(ST0) to	
				STO_STANDBY state.	•
				4'h5 : Set main state(ST0) to ST0_CM0	
				state.	
				4'h6 : Set main state(ST0) to	
				STO_STDSPI state.	
				4'h7 : Set main state(ST0) to	
				ST0_EE_CFG state.	
				4'h8 : Set main state(ST0) to	
				ST0_RANDOM state.	
				4'h9 : Set main state(ST0) to	
				ST0_SYMCIP state.	
				4 hA : Set main state(ST0) to ST0_OKA	
	WR	[3:0]	RG_ST0_OPMODE	state.	0x0
	VVIX	[5.0]	NG_STO_OF WIODE	4'hB : Set main state(ST0) to	OXO
				STO_MIDR state.	
				4'hC : Set main state(ST0) to	
				STO_PERM_GET state.	
				4'hF : Set main state(ST0) to	
				ST0_EEP_OW_CTRL state.	
				The correct order of control for this	
				register is as follows.	
				(Correct use examples.)	
				PWR_ON(or SW_RESETB)->	
				STO_STANDBY -> STO_STDSPI->	
				STO_STANDBY -> STO_CM0 ->	
				STO_STANDBY -> STO_EE_CFG ->	
				STO_STANDBY	
Neo	win	C	DALPU-4 DATASH	EET V001 (Incorrect use example.)	
www.neo	wine.co	m		PWR_ON(or SW RESETB) ->	
				STO STANDBY -> STO STDSPI->	

ADDR(HEX)	WR	BIT	NAME/RANGE	DESCRIPTION	RESET VALUE
RG_ST1_CM0	_OPM	ODE, R	ESERVED		
0x10605			RESERVED		
RG_ST1_STDS	SPI_OP	MODE			
User(E-MCU)	can c	ontrol :	ST1_STDSPI state with this	register.	
		[7:3]	RESERVED		
0x10606		[2:0]	RG_ST1_STDSPI_OPMOD E	3'h4: Set ST1_STDSPI state to ST1_STDSPI_SHA state. Other values: Not defined as a specific action. If user wants to ends ST1_STDSPI_SHA state and writes ' 1 ' to this register.	0x0
RG_ST1_EE_C	FG_OF	PMODE	, reserved		
0x10607			RESERVED		
RG_ST1_RND User(E-MCU)		ontrol :	ST1_RND state with this req	gister.	
		[7:3]	RESERVED		
0x10608		[2:0]	RG_ST1_RND_OPMODE	3'h2: Set ST1_RND state to ST1_RND_GEN_SPI0 state. - E-MCU write '0x2' to this register to create a random value through SPI0 interface. At this state the E-MCU controls random generation function. 3'h4: Set ST1_RND state to ST1_RND_GEN_SYMCIP state. - E-MCU write '0x2' to this register, to make the symcipher creates a random value. At this state the hardware (symcipher) controls random generation function.	0x0

ADDR(HEX)	WR	BIT	NAME/RANGE	DESCRIPTION	RESET VALUE
RG_ST1_SYM User(E-MCU)	CIP_O can c	PMODE	E ST1_SYMCIP state with this	register tate at the end of a specific operation. 4'h1: Set ST1_SYMCIP state to ST1_SYMCIP_STANDBY state. 4'h2: Set ST1_SYMCIP state to ST1_SYMCIP_AESEncrypt state.	VALUE
0x10609		[3:0]	RG_ST1_SYMCIP_OPMO DE	4'h3: Set ST1_SYMCIP state to ST1_SYMCIP_AESDecrypt state. 4'h4: Set ST1_SYMCIP state to ST1_SYMCIP_AESEncWrite state. 4'h5: Set ST1_SYMCIP state to ST1_SYMCIP_AESEncRead state. 4'h6: Set ST1_SYMCIP state to ST1_SYMCIP_AESKeyLoad state. 4'h7: Set ST1_SYMCIP state to ST1_SYMCIP_RSCreate state. 4'h8: Set ST1_SYMCIP state to ST1_SYMCIP_RSCreate state. 4'h9: Set ST1_SYMCIP state to ST1_SYMCIP_RSSHARead state. 4'h9: Set ST1_SYMCIP state to ST1_SYMCIP_RSDirRead state. 4'h4: Set ST1_SYMCIP state to ST1_SYMCIP_SHAAuth state. 4'h8: Set ST1_SYMCIP state to ST1_SYMCIP_AESLock state. 4'hC Reserved 4'hC Reserved 4'hC Reserved 4'hC Reserved 4'hF: Set ST1_SYMCIP state to ST1_SYMCIP_STOP0 state. 4'hF: Set ST1_SYMCIP state to ST1_SYMCIP_STOP0 state.	0x0

ADDR(HEX)	WR	BIT	NAME/RANGE	DESCRIPTION	RESET VALUE	
RG_ST1_OKA_OPMODE						
User(E-MCU)	can c	ontrol S	ST1_OKA state with this req	gister		
E-MCU sets t	his re	gister a	s ST1_OKA_STANDBY state	at the end of a specific operation.		
		[7:3]	RESERVED			
				3'h1 : Set ST1_OKA state to		
				ST1_OKA_STANDBY state.		
1060A		[2,0]	DC CT1 OVA ODMODE	3'h2 : Set ST1_OKA state to	0.40	
		[2:0]	RG_ST1_OKA_OPMODE	ST1_OKA_OKA2_KEY_GEN state.	0x0	
				3'h3 : Set ST1_OKA state to		
				ST1_OKA_OKA2_ED state.		
RG_ST1_MIDI	_		R counter backup procedu	re		
		[7:1]	RESERVED			
10000		[0]	RG_ST1_MIDR_EEP_RD_S I	0 : CONFIG PAGE Read, Backup,		
1060B				RSFLAG SET finish	0x0	
				1 : CONFIG PAGE Read, Backup, RSFLAG SET start		
RG_ST1_PERN	l И_GET	_OPMC	DDE, RESERVED			
1060C			RESERVED			
1060D			RESERVED			
1060E			RESERVED			
RG_ST1_EEP_	OW_C	TRL_OF	PMODE			
User(E-MCU)	can c	ontrol S	ST1_EEP_OW_CTRL state wi	th this register		
E-MCU sets to operation.	his re	gister a	s ST1_EEP_OW_CTRL_STAN	IDBY state at the end of a specific		

VDDD(REA)	WR	BIT	NAME/DANCE	DESCRIPTION	RESET
ADDR(HEX)	WK	БП	NAME/RANGE	DESCRIPTION	VALUE
				3'h0 : RESERVED	
				3'h1 : Set ST1_EEP_OW_CTRL state to	
				ST1_EEP_OW_CTRL_STANDBY state.	
				3'h2 : Set ST1_EEP_OW_CTRL state to	
	WR	[2:0]	RG_EEP_OW_CTRL_OPM	ST1_EEP_OW_CTRL_DETOUR state.	0x0
	VVK	[2.0]	ODE	3'h3 : Set ST1_EEP_OW_CTRL state to	UXU
				ST1_EEP_OW_CTRL_DESTROY0 state.	
				3'h4 : Set ST1_EEP_OW_CTRL state to	
				ST1_EEP_OW_CTRL_DESTROY1 state.	
				3'h5 ~ 3'h7 : RESERVED	
0x10610			RESERVED		
••••					
0x10618			RESERVED		
RG_ST2_SYM	CIP_O	PMODE	<u> </u>		
User(E-MCU)	can c	ontrol	ST2_SYMCIP state with this	register.	
When the E-	MCU v	write re	gistry values, hardware per	rforms control actions corresponding to	
the values. W	/hen c	ontrol	operation is completed, E-	MCU sets the register to	
ST2_AES_STA	NDBY	state.			
E-MCU sets t	his re	gister a	s ST2_AES_STANDBY state	at the end of a specific operation.	
0x10619		[7:4]	RESERVED		

ADDR(HEX)	WR	ВІТ	NAME/RANGE	DESCRIPTION	RESET VALUE
	WR	[3:0]	RG_ST2_SYMCIP_OPMO DE_AES	3'h1: Set ST2_SYMCIP_OPMODE_AES state to ST2_SYMCIP_OPMODE_AES_STANDBY state. 3'h2: Set ST2_SYMCIP_OPMODE_AES state to ST2_SYMCIP_OPMODE_AES_INITTIC state. 3'h3: Set ST2_SYMCIP_OPMODE_AES state to ST2_SYMCIP_OPMODE_AES_KEYTIC state. 3'h4: Set ST2_SYMCIP_OPMODE_AES state to ST2_SYMCIP_OPMODE_AES_RUNREAD Y state 3'h8: Set ST2_SYMCIP_OPMODE_AES state to ST2_SYMCIP_OPMODE_AES_RUNREAD Y state 3'h8: Set ST2_SYMCIP_OPMODE_AES state to ST2_SYMCIP_OPMODE_AES_STATE state. 3'h9: Set ST2_SYMCIP_OPMODE_AES state to ST2_SYMCIP_OPMODE_AES_KEYLOAD state. 3'hA ~3'hD: This state is used by a hardware control part. 3'hE: Set ST2_SYMCIP_OPMODE_AES state to ST2_SYMCIP_OPMODE_AES_DEC_WR state. At this state a input cipher text is decrypted and save to the EEPROM. 3'hF: Set ST2_SYMCIP_OPMODE_AES state to \$\frac{\text{ST2_SYMCIP_OPMODE_AES}}{\text{ST2_SYMCIP_OPMODE_AES}} = \frac{\text{ST2_SYMCIP_OPMODE_AES}}{\text{ST3_ENPC_RD}} = \frac{\text{ST2_SYMCIP_OPMODE_AES}}{\text{ST3_ENPC_RD}} = \frac{\text{ST2_SYMCIP_OPMODE_AES}}{\text{ST3_ENPC_RD}} = \frac{\text{ST2_SYMCIP_OPMODE_AES}}{\text{ST3_ENPC_RD}} = \frac{\text{ST3_ENPC_RD}}{\text{ST3_ENPC_RD}} = \frac{\text{ST3_ENPC_RD}}{\te	Ox0
www.neov	vine.co	m		state.	

ADDR(HEX)	WR	ВІТ	NAME/RANGE	DESCRIPTION	RESET VALUE	
DC FF LICED	RG_EE_USER_ZONE_SEL					
		_	zonos Ono usor zono sono	sists of A pages		
			zones. One user zone cons	1 3		
			b pages. One page size is	64 Bytes(512-bit).		
			16 Bytes(128-bit).	_		
The user can	write	or reac	d in sub-page or page unit			
				2'h0 : [127:0] of selected page		
		[7:6]	RG_EE_UZ_SUBFRAMEN	2'h1 : [255:128] of selected page	0x0	
			UM	2'h2 : [383:256] of selected page	,	
				2'h3 : [511:384] of selected page		
				2'h0 : subpage 0 (0x00 ~ 0x3F)		
		[5.4]	[5:4]	2'h1 : subpage 1 (0x40 ~ 0x7F)	0x0	
1061A		[5.4]		2'h2 : subpage 2 (0x80 ~ 0xBF)	0.00	
1001A				2'h3 : subpage 3 (0xC0 ~ 0xFF)		
				4'h0 : RESERVED		
				4'h1 : EE_USER_ZONE_M01 (0xF100 ~		
				0xF1FF)	0.0	
	WR	[3:0]	RG_EE_UZ_PAGENUM		0x0	
				4'hF: EE_USER_ZONE_M15 (0xFF00 ~		
			X	0xFFFF)		
0x1061B			RESERVED			
RG_EE_CFG_R	D_RG	_EEBUF	_ST			
			_	this register, One page EEPROM data		
is read and s				. 3		
			EEPROM, The user control	ls this register first.		
			RG_EE_CFG_RD_RG_EEBU	Access control is writing '0x0' to this		
0x1061C	Α	-	F_ST	register.	-	
			-			

ADDR(HEX)	WR	BIT	NAME/RANGE	DESCRIPTION	RESET	
ADDR(HEA)	VVK	DII	NAIVIE/KANGE	DESCRIPTION	VALUE	
RG_ST3_SYM	CIP_RS	SCREAT	E_OPMODE			
This register	This register is used to create the root serial(RSCreate operation).					
User(E-MCU)	can c	ontrol S	ST3_SYMCIP_RSCREATE_OP	MODE state with this register.		
When the E-N	MCU v	write re	gistry values to this registe	r and access RG_ACCESS register,		
hardware per	forms	contro	ol actions corresponding to	the values.		
When contro	l oper	ation is	completed, E-MCU sets th	ne register to		
ST3_SYMCIP_	RSCRI	EATE_S	TANDBY state and access R	G_ACCESS register.		
E-MCU sets t	E-MCU sets this register as ST3_SYMCIP_RSCREATE_STANDBY state at the end of a specific					
operation.						
0x1061D		[7:3]	RESERVED			

ADDR(HEX)	WR	BIT	NAME/RANGE	DESCRIPTION	RESET
ADDIK(ITEX)	VVIX	Dii	TVAIVIL/TVAIVOL	DESCRIPTION	VALUE
				3'h1 : Set	
				ST3_SYMCIP_RSCREATE_OPMODE	
				state to	
				ST3_SYMCIP_RSCREATE_STANDBY	
				state.	
				3'h2 : Set	
			ST3_SYMCIP_RSCREATE_OPMODE		
				state to ST3_SYMCIP_RSCREATE_ENC1	•
				state.	
				3'h3 : Set	
				ST3_SYMCIP_RSCREATE_OPMODE	
	WR	12.01	RG_ST3_SYMCIP_RSCREA	state to ST3_SYMCIP_RSCREATE_ENC2	0x0
	VVK	[2:0]	TE_OPMODE	state.	UXU
				3'h4 : Set	
				ST3_SYMCIP_RSCREATE_OPMODE	
				state to	
				ST3_SYMCIP_RSCREAETE_WR_EEP	
				state.	
				3'h7 : Set	
				ST3_SYMCIP_RSCREATE_OPMODE	
				state to	
				ST3_SYMCIP_RSCREATE_WR_EEBUF	
				state.	
1061E			RESERVED		

ADDR(HEX)	WR	BIT	NAME/RANGE	DESCRIPTION	RESET VALUE			
RG_ST3_SYMCIP_KEYLOAD_OPMODE								
This register	is use	d to cre	eate the root serial(AESKey	Load operation).				
User(E-MCU) can control RG_ST3_SYMCIP_KEYLOAD_OPMODE state with this register.								
When the E-MCU write registry values to this register and access RG_ACCESS register,								
hardware per	forms	contro	l actions corresponding to	the values.				
When contro	l oper	ation is	s completed, E-MCU sets th	ne register to				
ST3_SYMCIP_	KEYLC	DAD_ST	ANDBY state and access Ro	G_ACCESS register.				
E-MCU sets t	his re	gister a	s ST3_SYMCIP_KEYLOAD_S	TANDBY state at the end of a specific				
operation.	Π							
		[7:3]	RESERVED	X				
				3'h1 : Set				
				ST3_SYMCIP_KEYLOAD_OPMODE state				
				to ST3_SYMCIP_KEYLOAD_STANDBY				
				state.				
1061F	WR	[2:0]	RG_ST3_SYMCIP_KEYLOA	3'h2: ST3_SYMCIP_KEYLOAD_DEC1	0x0			
	VVIX	[2.0]	D_OPMODE	state.	UXU			
				3'h3: ST3_SYMCIP_KEYLOAD_DEC2				
								state.
						3'h4 : ST3_SYMCIP_KEYLOAD_WR_EEP		
				state.				
RG_EE_KEY_A	ES_CT	RL						
Provides the	location	on of E	EPROM storage for the key	s used for AESEncrypt, AESDecrypt,				
AESEncRead	and A	ESEncw	rite operations.					
It also tells th	ne loca	ation of	f the EEPROM to store the	keys that were created when				
performing A	ESKey	/Load o	perations.					
Keys from AE	SKeyL	oad op	perations are used for AESE	ncrypt, AESDecrypt, AESEncRead, and				
AESEncwrite operations.								
		[7:2]	RESERVED					
				2'h0 : EE_KEY_AES_x0				
0x10620	WR	[1:0]	RG_EE_KEY_AES_xN	2'h1 : EE_KEY_AES_x1	0x0			
	VVIX	[1.0]	NO_LL_INLI_ALO_XIN	2'h2 : EE_KEY_AES_x2	0.00			
				2'h3 : EE_KEY_AES_x3				
RG_UZID								

ADDR(HEX)	WR	BIT	NAME/RANGE	DESCRIPTION	RESET VALUE
0x10621			RESERVED		
RG_KL_CTRL					
Use this regis	ter fo	r AESK	eyLoad operations.		
		[7:5]	RESERVED		
				This register selects between the key made with AES decryptor and the	
				value entered with AES text input.	
	WR	[4]	RG_KL_KeySaveSel	0 : Select a value made with AES	0x0
				decryption.	
				1 : Select a value that enters the AES	
				text input.	
				The register that selects the text	
				message into the AES decryptor input.	
				2'h0 : Select ciphertext that E-MCU	
				enters as AES text input.	
	WR	[3:2]	RG_KL_TextSel	2'h1 : Use the key value	0x0
	VVIX	[3.2]	NG_NE_TEXTSCI	EE_KEY_ASYMCIP_x0 as the AES text	0.00
0x10622				value that you created as an ECDH	
				result.	
				2'h2 : Use the full key value made	
				with OKA as the AES text entry.	
				A registry that selects the key	
				message that enters the AES	
				decryptor input.	
				2'h0 : Use the EE_key_SEEDs stored in	
				the EEPROM with the AES key input.	
	WR	[1:0]	RG_KL_KeySel	2'h1 : Use the EE_key_AES_x0 stored in	0x0
				the EEPROM with the AES key input.	
				2'h2 : Use the EE_key_AES_x1 stored in	
				the EEPROM with the AES key input.	
				2'h3 : Use the EE_key_AES_x2 stored in	
				the EEPROM with the AES key input.	

ADDR(HEX)	WR	BIT	NAME/RANGE	DESCRIPTION	RESET VALUE
RG_RSCREAT	_		,	,	
Use this regis	ster fo	r RSCre	eate, RSSHARead, and RSD	irRead operations.	
		[7]	RESERVED		
				This register is used to read	
				EE_AES_KEY_x3.	
				You can read EE_AES_KEY_x3 with	
				UID_PWM permission.	
				If the value of RG_EE_RS_xN is " 1 "	•
		[6]	DirReadAES_KEY_x3	(RS_x1), or " 3 " (RS_x3), then	0x0
				EE_AES_KEY_x3 is not readable.	
				That is, if the RG_EE_RS_x1 value is " 1	
				" and DirReadAES_key_x3 (AES_KEY_x3)	
				value is " 1 ", the RS_x1 value can be	
				read.	
	MAD			Used for RSCreate, RSSHARead, and	0.0
0x10623				RSDirRead operations.	
		[F. 4]	DC FF DCN	In RSCreate mode, you specify the	
	WR	[5:4]	RG_EE_RS_xN	keys to generate.	0x0
				In RSSHARead, RSDirRead mode,	
				specify the key to be read.	
		[3]	RESERVED		
	WD	[2]	DC DCC KovCovoCol	Used for RSCreate, RSSHARead	0.40
	WR	[2]	RG_RSC_KeySaveSel	operations.	0x0
				Used for RSCreate operations.	
				When creating RND1 (using the AE256	
	WR	[1]	DC DCC CENI DNID1	key as [255:128]), This register must	0x0
	VVK	[1]	RG_RSC_GEN_RND1	be set to ' 1 ' before the RND_GEN	UXU
				command and clear to '0' after	
				creation.	

ADDR(HEX)	WR	ВІТ	NAME/RANGE	DESCRIPTION	RESET VALUE
	WR	[0]	RG_RSC_GEN_RND0	Used for RSCreate operations. When creating RND0 (using the AE256 key as [127:0]), This register must be set to ' 1 ' before the RND_GEN command and clear to ' 0 ' after creation.	0x0
RG_SHAAUTH		L			
For the first r message to I message.	metho DALPU	d, DAL J-3, DA	PU-3 performs authenticati LPU-3 performs the authen	ntication can be made in two directions. on. If E-MCU gives the certification tication using the authentication cation. If DALPU-3 gives the	
			-MCU, E-MCU performs th		
authenticatio		_	,		
Both method	s are	necessa	ary for full certification.		
		[7:2]	RESERVED		
	WR	[1]	rST2_SYMCIP_SHAAuth_ STAY_DP	0 : None 1 : Write " 1 " to complete the SHA-authentication operation.	0x0
0x10624	WR	[0]	RG_SHAAuthQuest_SYM CIP_EMCU	0 : E-MCU asks the question. E-MCU creates authentication messages(AuthMsgMCU[255:0] and AuthText[127:0]) and send it to DALPU-3. 1 : DALPU-3 asks the questions. DALPU-3 creates authentication messages(AuthMsgDevice[255:0] and AuthRND[127:0]) and send it to E-MCU.	0x0
0x10625			RESERVED		

ADDR(HEX)	WR	BIT	NAME/RANGE	DESCRIPTION	RESET VALUE
RG_PERM_GE	T_CTF	RL	L	L	
This register	writes	the inf	formation that DALPU-3 red	quire to control STO_PERM_GET state.	
		[7:3]	RESERVED		
				The register that tells the EEPROM	
				where the password is stored.	
0x10626				3'h5 : EE_SUPER_PW	
UX1U626	Ox10626 WR [2:0] G_PERM_GET_CTRL1 is register tells each password [7:6] R [5] RG Ox10627 R [4]	RG_EE_PW_ADDR	3'h4 : EE_DETOUR_PW	0x1	
				3'h3 : EE_DESTROY0_PW	
				3'h2 : EE_DESTROY1_PW	
				3'h1 : EE_EEPROM_PW	
				3'h0 : EE_UID_PW	
RG_PERM_GE	T_CTF	RL1			
This register	tells e	ach pa	ssword permission acquisiti	ion state.	
		[7:6]	RESERVED		
			DC DEDM SLIDED DASS	0 : Failed to acquire SUPER_PASS	
	D	[5]		password permission(authorization).	
		RL s the information that D [7:3] RESERV [2:0] RG_EE_PW_ RL1 each password permission [7:6] RESERV [5] RG_PERM_SUF RG_PERM_DET S	NO_1 ENW_SOT EN_1 ASS	1 : Succeeded to acquire SUPER_PASS	
				password permission(authorization).	
				0 : Failed to acquire DETOUR_PASS	
			RG_PERM_DETOUR_PAS	password permission(authorization).	
0x10627	R	[4]		1 : Succeeded to acquire	
				DETOUR_PASS password	
				permission (authorization).	
				0 : Failed to acquire DESTROY0_PASS	
			RG_PERM_DESTROY0_PA	password permission(authorization).	
	R	[3]		1 : Succeeded to acquire	
			33	DESTROY0_PASS password	
				permission(authorization).	

ADDR(HEX)	WR	BIT	NAME/RANGE	DESCRIPTION	RESET VALUE
				0 : Failed to acquire DESTROY1_PASS	77.101
			password permission(authorization).		
	R	[2]	RG_PERM_DESTROY1_PA	1 : Succeeded to acquire	
			SS D	DESTROY1_PASS password	
				permission(authorization).	
				0 : Failed to acquire EEPROM_PASS	
			RG_PERM_EEPROM_PAS	password permission(authorization).	
	R	[1]	S S	1 : Succeeded to acquire	•
			3	EEPROM_PASS password	
				permission(authorization).	
				0 : Failed to acquire UID_PASS	
	R	[0]	RG_PERM_UID_PASS	password permission(authorization).	
	IX.	[O]	NO_FERIN_OID_FA33	1 : Succeeded to acquire UID_PASS	
				password permission(authorization).	
RG_PERM_RE	LEASE				
If E-MCU wri	tes ' 0	' to th	is register in ST0_PERM_GE	T state, the DALPU-3 returns all	
acquired pass	sword	permis	ssions.		
0x10628	Α	-	RG_PERM_RELEASE	J'	
RG_PERM_GE	T_EE_I	RD_PRE	E_SP		
When E-MCL	J write	es ' 0 ' 1	to this register in STO_PERM	M_GET state, the DALPU-3 starts the	
process of ob	otainir	ng the p	password permission. In otl	her words, DALPU-3 reads and backs up	
the correspon	nding	EEPRO	M configuration area and v	waits for E-MCU to write the PW_CT.	
			RG_PERM_GET_EE_RD_P		
0x10629	Α	-	RE_SP		
0x1062A			RESERVED		
ONTOOLA			RESERVED		
0x10634			RESERVED		
			NESLITAL	1	
RG_AES_CTRL This register controls the AES and ABIA apparations					
This register controls the AES and ARIA operations.					
The operations include encryption and decryption.					

ADDR(HEX)	WR	ВІТ	NAME/RANGE	DESCRIPTION	RESET VALUE
		[7]	RESERVED		-
				Register for the selection of five	
				modes of operation.	
				3'h0 : ECB	
	WR	[6:4]	rg_aes_opmode	3'h1 : CBC	0x0
				3'h2 : OFB	
				3'h3 : CTR	
				3'h4 : CFB	•
				This register selects frame length.	
				This register selects one or two frame	
				encryption(decryption) processing in	
				ST1_SYMCIP_AESEncrypt state of	
				ST0_SYMCIP state. Once set in two	
				frame mode, the symcipher performs	
				encryption or decryption after E-MCU	
	WR	[3]	RG_AES_2_1_FRAME	writes 2 frames. The first frame	0x0
0x10635				performance result is saved to	
				RG_EEBUF[383:256] and the second	
				frame performance result is saved to	
				RG_EEBUF [511:384].	
				1 : Two frame mode	
				0 : One frame mode	
				1(BYPASS), 0(Normal)	
				In BYPASS mode, the LSB bit value is	
				changed for each byte of the input	
	MD	[2]	DC DVDACC	text.	0.40
	WR	[2]	RG_BYPASS		0x0
				Example)	
				INPUT TEXT : 0xC7 5D	
				OUTPUT TEXT: 0xC6 5C	
	WR	[1]	RG_128_256	1(128), 0(256)	0x0
	WR	[0]	RG_AES_ARIA	1(AES), 0(ARIA)	0x0

ADDR(HEX)	WR	BIT	NAME/RANGE	DESCRIPTION	RESET VALUE		
0x10636			RESERVED				
0x10637			RESERVED				
RG_SHA_CTRL :							
1. Check regi	ster co	ontorl c	oder at TV0610001				
1.1. RG_ST0_0	OMPC	DE ->	rg_st1_stdspi_opmode -	-> RG_SHA_CTRL			
1.2. RG_SHA_	CTRL	-> RG_	STO_OPMODE -> RG_ST1_S	STDSPI_OPMODE			
		[7:2]	RESERVED				
0x10638	WR	[1]	RG_SHA_ONLY_FRM_SEL	1 : SHA only multi frame. 0 : SHA only single frame.	0x0		
OX. OCC	WR	[0]	RG_SHA_MF_STOP	1 : SHA multi frame stop. 0 : normal	0x0		
0x10639			RESERVED				
1063A			RESERVED				
1063B			RESERVED				
RG_OKA_CTR This register		ls AES	in ST0_OKA state.				
		[7:2]	RESERVED				
1063C	WR	[1]	RG_OKA_10_11N	The following function can be controlled only when the value of EE_CONFIG_NW:EE_CONFIG_NW_CTRL 0:EE_OKA_10_11N is '0'. 1 : OKA 1:0 communication 0 : OKA 1:1 or 1:N communication (default)	0x0		

ADDR(HEX)	WR	BIT	NAME/RANGE	DESCRIPTION	RESET VALUE
				 Precautions for running OKA in two frame mode. (1) DALPU-3 conduct a key initialization in the wait time for the first frame input. 	
	WR	[0]	RG_OKA_2_1_FRAME	 (2) Therefor, in two frame mode, E-MCU should encrypt(or decrypt) even number of frames. (3) If E-MCU finishes encryption(or decryption) in odd number frames, then following enryption(or decryption), E-MCU must begin with Key generation operation. 1: 2 frame mode 1: 2 frame mode 	0x0
				0 : 1 frame mode	
RG_AES_TVA This register		ES twis	t value.		
1063D	WR	[7:0]	RG_AES_TVALUE7	This register only works in AES. 0x00 : Standard AES Mode 0xXX : Twist AES Mode	0x0
RG_AES_TVA This register		ES twis	t value.		
		[7:4]	RESERVED		
1063E	WR	[3:0]	RG_AES_TVALUE8	This register only works in AES. 0x0 : Standard AES Mode 0xX : Twist AES Mode	0x0
1063F			RESERVED		
			RESERVED		
1064F			RESERVED		

ADDR(HEX)	WR	BIT	NAME/RANGE	DESCRIPTION	RESET VALUE
RG_SLEEP_TIM					
RESET VALUE			_		
Set this regis	ter va	lue to () after power on.		
0x10650	WR	[4:0]	RG_SLEEP_TIMER_MSB		0x1F
0x10651	WR	[7:0]	RG_SLEEP_TIMER_LSB		0xFF
0x10652			RESERVED		
			RESERVED		•
0x1065F			RESERVED		
			RESERVED	<i>Y</i> \ <i>O</i>	
••••			RESERVED		
106AF			RESERVED		
		[7:2]	RESERVED		
106B5	WR	[2:0]	RESERVED		
106B6			RESERVED		
••••					
106C0			RESERVED		
106DF			RESERVED		
106EF			RESERVED		
106F0		[7:1]	RESERVED		
106F1			RESERVED		
RG_RNDGEN	_USER				
10700		[7:1]	RESERVED		

ADDR(HEX)	WR	BIT	NAME/RANGE	DESCRIPTION	RESET
ADDR(ITEX)	VVIX	ווט	BIT WANTE/RAINGE DESCRIPTION		VALUE
				1 : RNDGEN user mode	
				User can enter random values that	
	WR	[0]	RG_RNDGEN_USER	the user specifies.	0x0
	VVI	[U]	KG_KINDGEIN_OSEK	0 : RNDGEN normal mode	UXU
				The internal random generator	
				produces a random.	
RG_RNDGEN			nerated random value in RN	NDGEN user mode	
		•	write '1', then '0' to this reg		
		[7:1]	RESERVED		
10701	WR	[0]	DC DNDCEN FEDUE CLD	1 : RG EEBUF Clear	0x0
	VVK	[0]	RG_RNDGEN_EEBUF_CLR	0:	UXU
RG_MCUAuth	nResul	t			
		[7:1]	RESERVED		
10720	D	[0]	DC MCHAuthDocult	1 : Auth Pass	0x0
	R	[0]	RG_MCUAuthResult	0 : Auth Fail	

6.2 CORTEX-M0 registers

6.2.1 SSP(SPI1) FEATURES

- Compliance to the AMBA Specification (Rev 2.0) for easy integration into SoC implementation.
- · Master or slave operation.
- Programmable clock bit rate and prescale.
- Separate transmit and receive first-in, first-out memory buffers, 16 bits wide, 8 locations deep.
- Programmable choice of interface operation, SPI, Microwire, or TI synchronous serial.
- Programmable data frame size from 4 to 16 bits.
- Independent masking of transmit FIFO, receive FIFO, and receive overrun interrupts.
- Internal loopback test mode available.

6.2.2 SSP(SPI1) OPERATION

Following reset, the PrimeCell SSP logic is disabled and must be configured when in this state.

Control registers SSPCR0 and SSPCR1 need to be programmed to configure the peripheral as a master or slave operating under one of the following protocols:

- Motorola SPI
- Texas Instruments SSI
- · National Semiconductor.

The bit rate, derived from the external SSPCLK, requires the programming of the clock prescale register SSPCPSR.

You can either prime the transmit FIFO, by writing up to eight 16-bit values when the PrimeCell SSP is disabled, or allow the transmit FIFO service request to interrupt the CPU. Once enabled, transmission or reception of data begins on the transmit (SSPTXD) and receive (SSPRXD) pins.

6.2.3 SSP(SPI1) REGISTERS

SSP Base Address: 0x4000_2200

SSP Register Address : SSP Base Address + Offset

Table 6-1 Summary of SSP Registers

ADDR(HEX) Offset	Туре	Width	NAME	DESCRIPTION	RESET
0x00	WR	16	SSPCR0	Control register 0.	0x0
0x04	WR	4	SSPCR1	Control register 1.	0x0
0x08	WR	16	SSPDR	Receive FIFO(read) and transmit FIFO data register(write).	0x
0x0C	R	5	SSPSR	Status register.	0x03
0x10	WR	8	SSPCPSR	Clock prescale register.	0x0
0x14	WR	4	SSPIMSC	Interrupt mask set and clear register.	0x0
0x18	R	4	SSPRIS	Raw interrupt status register.	0x8
0x1C	R	4	SSPMIS	Masked interrupt status register.	0x0

ADDR(HEX) Offset	Туре	Width	NAME	DESCRIPTION	RESET
0x20	W	4	SSPICR	Interrupt clear register.	0x0
0x24	WR	2	SSPDMACR	DMA control register.	0x0

Table 6-2 SSP Registers Details

ADDR(HEX) Offset	WR	BIT	NAME/RANGE	DESCRIPTION	RESET VALUE			
Control regist	er 0 (SSF	PCR0)	•					
SSPCR0 is con	0 is control register 0 and contains five bit fields that control various functions within the SSP.							
	WR	[15:8]	SCR	Serial clock rate. The value SCR is used to generate the transmit and receive bit rate of the SSP. The bit rate is: where CPSDVSR is an even value from 2-254, programmed through the SSPCPSR register and SCR is a value from 0-255.	0x0			
	WR	[7]	SPH	SSPCLKOUT phase, applicable to Motorola SPI frame format only.	0x0			
	WR	[6]	SPO	SSPCLKOUT polarity, applicable to Motorola SPI frame format only.	0x0			
	WR	[5:4]	FRF	Frame format 00 Motorola SPI frame format. 01 TI synchronous serial frame format. 10 National Microwire frame format. 11 Reserved, undefined operation.	0x0			
0x0	WR	[3:0]	DSS	Data Size Select: 0000 Reserved, undefined operation. 0001 Reserved, undefined operation. 0010 Reserved, undefined operation. 0011 4-bit data. 0100 5-bit data. 0101 6-bit data. 0110 7-bit data. 0111 8-bit data. 1000 9-bit data. 1001 10-bit data. 1011 12-bit data. 1011 12-bit data. 1100 13-bit data. 1110 15-bit data. 1111 16-bit data.	0x0			
Control regist	er 1 (SSF	PCR1)						
SSPCR1 is the	control	register 1	and contains four differ	rent bit fields, that control various functions within the SSP.				
		[15:4]	-	Reserved, read unpredictable, should be written as 0.	-			
0x4	WR	[3]	SOD	Slave-mode output disable. This bit is relevant only in the slave mode, MS=1. In multiple-slave systems, it is possible for an SSP master to broadcast a message to all slaves in the system while ensuring that only one slave drives data onto its serial output line. In such systems the RXD lines from multiple slaves could be tied together. To operate in such systems, the SOD bit can be set if the SSP slave is not supposed to drive the SSPTXD line: 0 SSP can drive the SSPTXD output in slave mode.	0x0			

			1 SSP must not drive the SSPTXD output in slave mode.	
WR	[2]	MS	Master or slave mode select. This bit can be modified only when the SSP is disabled, SSE=0: 0 Device configured as master, default. 1 Device configured as slave.	0x0
WR	[1]	SSE	Synchronous serial port enable: 0 SSP operation disabled. 1 SSP operation enabled.	0x0
WR	[0]	LBM	Loop back mode: 0 Normal serial port operation enabled. 1 Output of transmit serial shifter is connected to input of receive serial shifter internally.	0x0

Data register (SSPDR)

SSPDR is the data register and is 16-bits wide. When SSPDR is read, the entry in the receive FIFO, pointed to by the current FIFO read pointer, is accessed. As data values are removed by the SSP receive logic from the incoming data frame, they are placed into the entry in the receive FIFO, pointed to by the current FIFO write pointer. When SSPDR is written to, the entry in the transmit FIFO, pointed to by the write pointer, is written to. Data values are removed from the transmit FIFO one value at a time by the transmit logic. It is loaded into the transmit serial shifter, then serially shifted out onto the **SSPTXD** pin at the programmed bit rate. When a data size of less than 16 bits is selected, the user must right-justify data written to the transmit FIFO. The transmit logic ignores the unused bits. Received data less than 16 bits is automatically right-justified in the receive buffer.

п				0 0 - 10 10 10 10 10 10 10 10 10 10 10 10 10	j =-8 j =============================	
					Transmit/Receive FIFO:	
					Read Receive FIFO.	
					Write Transmit FIFO.	
	0x8	WR	[15:0]	DATA	You must right-justify data when the SSP is programmed for	-
					a data size that is less than 16bits. Unused bits at the top are	
					ignored by transmit logic. The receive logic automatically	
					right-justifies.	

Status register (SSPSR)

SSPSR is a RO status register that contains bits that indicate the FIFO fill status and the SSP busy status.

33P3K 18 a 1	KO stati	is register	that contains bits tha	t indicate the FIFO fill status and the SSP busy status.	
	-	[15:5]	-	Reserved, read unpredictable, should be written as 0.	-
	R	[4]	BSY	SSP busy flag (read only): 0 SSP is idle. 1 SSP is currently transmitting and/or receiving a frame or the transmit FIFO is not empty	0x0
	R	[3]	RFF	Receive FIFO full (read only): 0 Receive FIFO is not full. 1 Receive FIFO is full.	0x0
0x10	R	[2]	RNE	Receive FIFO not empty, (read only): 0 Receive FIFO is empty. 1 Receive FIFO is not empty.	0x0
	R	[1]	TNF	Transmit FIFO not full, (read only): 0 Transmit FIFO is full. 1 Transmit FIFO is not full.	0x1
	R	[0]	TFE	Transmit FIFO empty, (read only): 0 Transmit FIFO is not empty. 1 Transmit FIFO is empty.	0x1

Clock prescale register (SSPCPSR)

SSPCPSR is the clock prescale register and specifies the division factor by which the input **SSPCLK** must be internally divided before further use. The value programmed into this register must be an even number between 2-254. The least significant bit of the programmed number is hard-coded to zero. If an odd number is written to this register, data read back from this register has the least significant bit as zero.

0x14	-	[15:8]	-	Reserved, read unpredictable, must be written as 0.	-
	WR	[7:0]	CPSDVSR	Clock prescale divisor. Must be an even number from 2-254, depending on the frequency of SSPCLK . The least	0x0

significant bit always returns zero on reads. Interrupt mask set or clear register (SSPIMSC) The SSPIMSC register is the interrupt mask set or clear register. It is a RW register. On a read this register gives the current value of the mask on the relevant interrupt. A write of 1 to the particular bit sets the mask, enabling the interrupt to be read. A write of 0 clears the corresponding mask. All the bits are cleared to 0 when reset. [15:4] Reserved, read as zero, do not modify. Transmit FIFO interrupt mask: 0 Transmit FIFO half empty or less condition interrupt is WR **TXIM** [3] 0x01 Transmit FIFO half empty or less condition interrupt is not Receive FIFO interrupt mask: 0 Receive FIFO half full or less condition interrupt is masked. WR [2] **RXIM** 0x0 1 Receive FIFO half full or less condition interrupt is not masked. 0x18 Receive timeout interrupt mask: 0 Receive FIFO not empty and no read prior to timeout WR period interrupt is masked. **RTIM** [1] 0x01 Receive FIFO not empty and no read prior to timeout period interrupt is not masked. Receive overrun interrupt mask: 0 Receive FIFO written to while full condition interrupt is WR [0] **RORIM** 0x0 1 Receive FIFO written to while full condition interrupt is not masked. Raw interrupt status register (SSPRIS) The SSPRIS register is the raw interrupt status register. It is a RO register. On a read this register gives the current raw status value of the corresponding interrupt prior to masking. A write has no effect. [15:4] Reserved, read as zero, do not modify Gives the raw interrupt state, prior to masking, of the R **TXRIS** [3] 0x1 SSPTXINTR interrupt Gives the raw interrupt state, prior to masking, of the R [2] **RXRIS** 0x00x1C SSPRXINTR interrupt Gives the raw interrupt state, prior to masking, of the **RTRIS** R [1] 0x0SSPRTINTR interrupt Gives the raw interrupt state, prior to masking, of the R **RORRIS** [0] 0x0 SSPRORINTR interrupt Masked interrupt status register (SSPMIS) The SSPMIS register is the masked interrupt status register. It is a RO register. On a read this register gives the current masked status value of the corresponding interrupt. A write has no effect. [15:4] Reserved, read as zero, do not modify Gives the transmit FIFO masked interrupt state, after R **TXMIS** 0x0 [3] masking, of the SSPTXINTR interrupt Gives the receive FIFO masked interrupt state, after masking, R [2] **RXMIS** 0x00x20 of the SSPRXINTR interrupt Gives the receive timeout masked interrupt state, after [1] **RTMIS** R ΛxΩ masking, of the SSPRTINTR interrupt Gives the receive over run masked interrupt status, after **RORMIS** masking, of the SSPRORINTR interrupt Interrupt clear register (SSPICR) The SSPICR register is the interrupt clear register and is write-only. On a write of 1, the corresponding interrupt is cleared. A write of 0 has no effect. [15:2] Reserved, read as zero, do not modify 0x24 W [1] RTIC Clears the SSPRTINTR interrupt 0x0 **RORIC** Clears the SSPRORINTR interrupt

DMA control register (SSPDMACR) The SSPDMACR register is the DMA control register. It is a RW register. All the bits are cleared to 0 on reset.									
THE SSEDWACK register is the DWA control register. It is a RW register. All the bits are cleared to 0 on reset.									
0x28	-	[15:2]	-	Reserved, read as zero, do not modify	-				
	WR	[1]	TXDMAE	Transmit DMA Enable. If this bit is set to 1, DMA for the transmit FIFO is enabled	0x0				
	WR	[0]	RXDMAE	Receive DMA Enable. If this bit is set to 1, DMA for the receive FIFO is enabled.	0x0				

7 EEPROM Configuration

8 Revision History

Version	Revision	Date	Comments	Editors
004		2018.11.01	Operation Cuicuit	Justin KIM
003		?	Editing.	HCLEE
002		2018.01.16	Release to Dream Security wo SPI0 register.	HCLEE
001	-	2017.12.07	Document creation.	HCLEE

